centrifugal pump solved examples|centrifugal pumps handbook pdf : inc The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency, … Warman centrifugal pump in a coal preparation plant application A pair of centrifugal pumps for circulating hot water within a hydronic heating system. Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor.
{plog:ftitle_list}
End Suction Pumps. End suction pumps are centrifugal pumps consisting of an axial inlet for suction. The pump discharges the fluid at 90 degrees to the suction. Due to their simplicity, end-suction pumps are the .
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
Some describe pump cavitation as the creation and collapse of the air bubbles in a fluid. While they may appear to look like air, those bubbles are technically a cavity, gaseous vapor, or vacuum. While cavitation is possible in all pump types, it is more common in centrifugal pumps where the bubbles quickly develop around the impeller’s axis.
centrifugal pump solved examples|centrifugal pumps handbook pdf